Faster tuple lattice sieving using spherical locality-sensitive filters

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

15 Downloads (Pure)

Samenvatting

To overcome the large memory requirement of classical lattice sieving algorithms for solving hard lattice problems, Bai-Laarhoven-Stehlé [ANTS 2016] studied tuple lattice sieving, where tuples instead of pairs of lattice vectors are combined to form shorter vectors. Herold-Kirshanova [PKC 2017] recently improved upon their results for arbitrary tuple sizes, for example showing that a triple sieve can solve the shortest vector problem (SVP) in dimension $d$ in time $2^{0.3717d + o(d)}$, using a technique similar to locality-sensitive hashing for finding nearest neighbors. In this work, we generalize the spherical locality-sensitive filters of Becker-Ducas-Gama-Laarhoven [SODA 2016] to obtain space-time tradeoffs for near neighbor searching on dense data sets, and we apply these techniques to tuple lattice sieving to obtain even better time complexities. For instance, our triple sieve heuristically solves SVP in time $2^{0.3588d + o(d)}$. For practical sieves based on Micciancio-Voulgaris' GaussSieve [SODA 2010], this shows that a triple sieve uses less space and less time than the current best near-linear space double sieve.
Originele taal-2Engels
Aantal pagina's15
TijdschriftarXiv.org,e-Print Archive, Mathematics
StatusGepubliceerd - 8 mei 2017

Bibliografische nota

12 pages + references, 2 figures. Subsumed/merged into Cryptology ePrint Archive 2017/228, available at https://ia.cr/2017/1228

Vingerafdruk Duik in de onderzoeksthema's van 'Faster tuple lattice sieving using spherical locality-sensitive filters'. Samen vormen ze een unieke vingerafdruk.

Citeer dit