Faster halvings in genus 2

P. Birkner, N. Thériault

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

6 Citaten (Scopus)

Samenvatting

We study divisor class halving for hyperelliptic curves of genus 2 over binary fields. We present explicit halving formulas for the most interesting curves (from a cryptographic perspective), as well as all other curves whose group order is not divisible by 4. Each type of curve is characterized by the degree and factorization form of the polynomial h(x) in the curve equation. For each of these curves, we provide explicit halving formulæ for all possible divisor classes, and not only the most frequent case where the degree of the first polynomial in the Mumford representation is 2. In the optimal performance case, where h(x)¿=¿x, we also improve on the state-of-the-art and when h(x) is irreducible of degree 2, we achieve significant savings over both the doubling as well as the previously fastest halving formulas.
Originele taal-2Engels
TitelSelected Areas in Cryptography (15th Annual Workshop, SAC 2008, Sackville, New Brunswick, Canada, August 14-15, 2008, Revised Selected Papers)
RedacteurenR. Avanzi, L. Keliher, F. Sica
Plaats van productieBerlin
UitgeverijSpringer
Pagina's1-17
ISBN van geprinte versie978-3-642-04158-7
DOI's
StatusGepubliceerd - 2009

Publicatie series

NaamLecture Notes in Computer Science
Volume5381
ISSN van geprinte versie0302-9743

Vingerafdruk

Duik in de onderzoeksthema's van 'Faster halvings in genus 2'. Samen vormen ze een unieke vingerafdruk.

Citeer dit