Fast approximation algorithms for the generalized survivable network design problem

Andreas Emil Feldmann, Jochen Könemann, Kanstantsin Pashkovich, Laura Sanità

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

In a standard f-connectivity network design problem, we are given an undirected graph G = (V, E), a cut-requirement function f : 2V → N, and non-negative costs c(e) for all e ∈ E. We are then asked to find a minimum-cost vector x ∈ ℕE such that x(δ(S)) ≥ f(S) for all S ⊆ V. We focus on the class of such problems where f is a proper function. This encodes many well-studied NP-hard problems such as the generalized survivable network design problem. In this paper we present the first strongly polynomial time FPTAS for solving the LP relaxation of the standard IP formulation of the f-connectivity problem with general proper functions f. Implementing Jain's algorithm, this yields a strongly polynomial time (2 + ε)-approximation for the generalized survivable network design problem (where we consider rounding up of rationals an arithmetic operation).

Originele taal-2Engels
Titel27th International Symposium on Algorithms and Computation, ISAAC 2016
RedacteurenSeok-Hee Hong
UitgeverijSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Pagina's33.1-33.12
ISBN van elektronische versie9783959770262
DOI's
StatusGepubliceerd - 1 dec. 2016
Extern gepubliceerdJa
Evenement27th International Symposium on Algorithms and Computation, ISAAC 2016 - Sydney, Australië
Duur: 12 dec. 201614 dec. 2016

Publicatie series

NaamLeibniz International Proceedings in Informatics, LIPIcs
Volume64
ISSN van geprinte versie1868-8969

Congres

Congres27th International Symposium on Algorithms and Computation, ISAAC 2016
Land/RegioAustralië
StadSydney
Periode12/12/1614/12/16

Vingerafdruk

Duik in de onderzoeksthema's van 'Fast approximation algorithms for the generalized survivable network design problem'. Samen vormen ze een unieke vingerafdruk.

Citeer dit