Samenvatting
This paper considers extreme values attained by a centered, multidimensional Gaussian process $X(t)= (X_1(t),\ldots,X_n(t))$ minus drift $d(t)=(d_1(t),\ldots,d_n(t))$, on an arbitrary set $T$. Under mild regularity conditions, we establish the asymptotics of \[ \log P \left(\exists{t\in T}:\bigcap_{i=1}^n\left\{X_i(t)-d_i(t)>q_iu\right\}\right), \] for positive thresholds $q_i>0$, $i=1,\ldots,n$, and $u\toi$. Our findings generalize and extend previously known results for the single-dimensional and two-dimensional cases. A number of examples illustrate the theory.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 2289-2301 |
Tijdschrift | Stochastic Processes and their Applications |
Volume | 120 |
Nummer van het tijdschrift | 12 |
DOI's | |
Status | Gepubliceerd - 2010 |