Samenvatting
We propose a simple and efficient deterministic extractor for an ordinary elliptic curve E, defined over , where n = 2l and l is a positive integer. Our extractor, for a given point P on E, outputs the first -coefficient of the abscissa of the point P. We also propose a deterministic extractor for the main subgroup G of E, where E has minimal 2-torsion. We show that if a point P is chosen uniformly at random in G, the bits extracted from the point P are indistinguishable from a uniformly random bit-string of length l.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 171-186 |
Tijdschrift | Designs, Codes and Cryptography |
Volume | 49 |
Nummer van het tijdschrift | 1-3 |
DOI's | |
Status | Gepubliceerd - 2008 |