Exploring the use of deep learning in task-flexible ILC

Anantha Sai Hariharan Vinjarapu, Yorick Broens, Hans Butler, Roland Toth

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Growing demands in today's industry results in increasingly stringent performance and throughput specifications. For accurate positioning of high-precision motion systems, feedforward control plays a crucial role. Nonetheless, conventional model-based feedforward approaches are no longer sufficient to satisfy the challenging performance requirements. An attractive method for systems with repetitive motion tasks is iterative learning control (ILC) due to its superior performance. However, for systems with non-repetitive motion tasks, ILC is generally not applicable, despite of some recent promising advances. In this paper, we aim to explore the use of deep learning to address the task flexibility constraint of ILC. For this purpose, a novel Task Analogy based Imitation Learning (TAIL)-ILC approach is developed. To benchmark the performance of the proposed approach, a simulation study is presented which compares the TAIL-ILC to classical model-based feedforward strategies and existing learning-based approaches, such as neural network based feedforward learning.

Originele taal-2Engels
Titel2023 American Control Conference, ACC 2023
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's2751-2756
Aantal pagina's6
ISBN van elektronische versie979-8-3503-2806-6
DOI's
StatusGepubliceerd - 3 jul. 2023
Evenement2023 American Control Conference, ACC 2023 - San Diego, Verenigde Staten van Amerika
Duur: 31 mei 20232 jun. 2023

Congres

Congres2023 American Control Conference, ACC 2023
Verkorte titelACC 2023
Land/RegioVerenigde Staten van Amerika
StadSan Diego
Periode31/05/232/06/23

Financiering

*This work has received funding from the ECSEL Joint Undertaking under grant agreement No 875999 and from the European Union within the framework of the National Laboratory for Autonomous Systems (RRF-2.3.1-21.2022-00002).

FinanciersFinanciernummer
National Laboratory for Autonomous SystemsRRF-2.3.1-21.2022-00002
European Commission
Electronic Components and Systems for European Leadership875999

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Exploring the use of deep learning in task-flexible ILC'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit