Exploring the Effect of Dataset Diversity in Self-supervised Learning for Surgical Computer Vision

Tim J.M. Jaspers (Corresponderende auteur), Ronald L.P.D. de Jong, Yasmina Al Khalil, Tijn Zeelenberg, Koen Kusters, Yiping Li, Romy C. van Jaarsveld, Franciscus H.A. Bakker, Jelle P. Ruurda, Willem M. Brinkman, Peter H.N. de With, Fons van der Sommen

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Downloads (Pure)

Samenvatting

Over the past decade, computer vision applications in minimally invasive surgery have rapidly increased. Despite this growth, the impact of surgical computer vision remains limited compared to other medical fields like pathology and radiology, primarily due to the scarcity of representative annotated data. Whereas transfer learning from large annotated datasets such as ImageNet has been conventionally the norm to achieve high-performing models, recent advancements in self-supervised learning (SSL) have demonstrated superior performance. In medical image analysis, in-domain SSL pretraining has already been shown to outperform ImageNet-based initialization. Although unlabeled data in the f ield of surgical computer vision is abundant, the diversity within this data is limited. This study investigates the role of dataset diversity in SSL for surgical computer vision, comparing procedure-specific datasets against a more heterogeneous general surgical dataset across three different downstream surgical applications. The obtained results show that using solely procedure-specific data can lead to substantial improvements of 13.8%, 9.5%, and 36.8% compared to ImageNet pretraining. However, extending this data with more heterogeneous surgical data further increases performance by an additional 5.0%, 5.2%, and 2.5%, suggesting that increasing diversity within SSL data is beneficial for model performance. The code and pretrained model weights are made publicly available at https://github.com/TimJaspers0801/SurgeNet.
Originele taal-2Engels
TitelData Engineering in Medical Imaging
SubtitelSecond MICCAI Workshop, DEMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings
RedacteurenBinod Bhattarai, Sharib Ali, Anita Rau, Razvan Caramalau, Anh Nguyen, Prashnna Gyawali, Ana Namburete, Daniel Stoyanov
Plaats van productieCham
UitgeverijSpringer
Pagina's43-53
Aantal pagina's11
ISBN van elektronische versie978-3-031-73748-0
ISBN van geprinte versie978-3-031-73747-3
DOI's
StatusGepubliceerd - 25 okt. 2024
Evenement2nd MICCAI Workshop on Data Engineering in Medical Imaging, DEMI 2024 - Marrakesh, Marokko
Duur: 10 okt. 202410 okt. 2024

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume15265
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Workshop

Workshop2nd MICCAI Workshop on Data Engineering in Medical Imaging, DEMI 2024
Verkorte titelDEMI 2024
Land/RegioMarokko
StadMarrakesh
Periode10/10/2410/10/24

Vingerafdruk

Duik in de onderzoeksthema's van 'Exploring the Effect of Dataset Diversity in Self-supervised Learning for Surgical Computer Vision'. Samen vormen ze een unieke vingerafdruk.

Citeer dit