Exploring Task Execution Patterns in Event Graphs

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
128 Downloads (Pure)

Samenvatting

Classical process mining aims to capture the behavior of a process based on a single dimension: the sequence of activities grouped by process cases. This viewpoint fails to capture how individual actors are organizing their work across multiple cases. We present a tool that uses the graph database Neo4j to model actor behavior over different cases as an event graph. We then use Neo4j queries to detect task execution patterns in the graph describing how multiple actors collaborate across multiple cases. Exploring and visualizing these patterns enables the data driven analysis of tasks, routines, and habits as studied in organizations research.

Originele taal-2Engels
TitelICPM 2021 Doctoral Consortium and Demo Track 2021
SubtitelProceedings of the ICPM Doctoral Consortium and Demo Track 2021 co-located with 10th International Conference on Process Mining (ICPM 2021)
RedacteurenMieke Jans, Gert Janssenswillen, Anna Kalenkova , Fabrizio Maria Maggi
UitgeverijCEUR-WS.org
Pagina's49-50
Aantal pagina's2
StatusGepubliceerd - 2021
Evenement3rd International Conference on Process Mining, ICPM 2021 - Eindhoven, Nederland
Duur: 31 okt. 20214 nov. 2021
Congresnummer: 3

Publicatie series

NaamCEUR Workshop Proceedings
UitgeverijCEUR-WS.org
Volume3098
ISSN van geprinte versie1613-0073

Congres

Congres3rd International Conference on Process Mining, ICPM 2021
Verkorte titelICPM 2021
Land/RegioNederland
StadEindhoven
Periode31/10/214/11/21

Bibliografische nota

Publisher Copyright:
Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Vingerafdruk

Duik in de onderzoeksthema's van 'Exploring Task Execution Patterns in Event Graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit