Exploring Photonic Oscillators for Oscillatory Neural Networks

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

97 Downloads (Pure)

Samenvatting

Oscillatory Neural Networks (ONNs) have emerged as a promising computational paradigm utilizing phase-based encoding being particularly attractive for tasks such as pattern recognition. Typically, ONNs have been widely investigated using a Kuramoto sinusoidal oscillator model. In contrast, this work investigates the ONN performance using a photonic oscillator described by the Yamada model for pattern retrieval tasks while comparing it against the Kuramoto model.We obtained the phase transition curve of two coupled Yamada oscillators, which exhibit two distinct states, in-phase and out-of-phase. These states are crucial for performing associative memory tasks. Additionally, we performed simulations on two different datasets under different
scenarios. The results indicate that the Yamada model achieves similarly high accuracies in pattern retrieval as the Kuramoto model, hence affirming the effectiveness of photonic laser neuron for ONN computing.
Originele taal-2Engels
StatusGeaccepteerd/In druk - 2025
Evenement2025 Annual Neuro-Inspired Computational Elements Conference, NICE 2025 - Heidelberg University, Heidelberg, Duitsland
Duur: 25 mrt. 202528 mrt. 2025
https://niceworkshop.org/nice-2025/

Congres

Congres2025 Annual Neuro-Inspired Computational Elements Conference, NICE 2025
Verkorte titelNICE
Land/RegioDuitsland
StadHeidelberg
Periode25/03/2528/03/25
Internet adres

Financiering

FinanciersFinanciernummer
NWONGF.1607.22.016
European Research Council101125031
NWO17269
Niet toegevoegd101092096

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Exploring Photonic Oscillators for Oscillatory Neural Networks'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit