Samenvatting
Prescriptive process monitoring (PrPM) systems analyze ongoing business process instances to recommend real-time interventions that optimize performance. The usefulness of these systems hinges on users applying the generated recommendations. Thus, users need to understand the rationale behind these recommendations. One way to build this understanding is to enhance each recommendation with explanations. Existing approaches generate explanations consisting of static text or plots, which users often struggle to understand. Previous work has shown that dialogue systems enhance the effectiveness of explanations in recommender systems. Large Language Models (LLMs) are an emerging technology that facilitates the construction of dialogue systems. In this paper, we investigate the applicability of LLMs for generating explanations in PrPM systems. Following a design science approach, we elicit explainability questions that users may have for PrPM outputs, we design a prompting method on this basis, and we conduct an evaluation with potential users to assess their perception of the explanations and their approach to interact with the system. The results indicate that LLMs can help users of PrPM systems to better understand the origin of the recommendations, and to produce recommendations that have sufficient detail and fulfill their expectations. On the other hand, users find that the explanations do not always address the “why” of a recommendation and do not let them judge if they can trust the recommendation.
Originele taal-2 | Engels |
---|---|
Titel | Business Process Management |
Subtitel | 22nd International Conference, BPM 2024, Krakow, Poland, September 1–6, 2024, Proceedings |
Redacteuren | Andrea Marrella, Manuel Resinas, Mieke Jans, Michael Rosemann |
Plaats van productie | Cham |
Uitgeverij | Springer |
Pagina's | 403-420 |
Aantal pagina's | 18 |
ISBN van elektronische versie | 978-3-031-70396-6 |
ISBN van geprinte versie | 978-3-031-70395-9 |
DOI's | |
Status | Gepubliceerd - 2 sep. 2024 |
Evenement | 22nd Business Process Management Conference 2024, BPM 2024 - Krakow, Polen Duur: 1 sep. 2024 → 6 sep. 2024 |
Publicatie series
Naam | Lecture Notes in Computer Science (LNCS) |
---|---|
Volume | 14940 |
ISSN van geprinte versie | 0302-9743 |
ISSN van elektronische versie | 1611-3349 |
Congres
Congres | 22nd Business Process Management Conference 2024, BPM 2024 |
---|---|
Verkorte titel | BPM 2024 |
Land/Regio | Polen |
Stad | Krakow |
Periode | 1/09/24 → 6/09/24 |
Financiering
This research is supported by the Estonian Research Council (PRG1226) and the European Research Council (PIX Project).
Financiers | Financiernummer |
---|---|
European Research Council |
Vingerafdruk
Duik in de onderzoeksthema's van 'Explanatory Capabilities of Large Language Models in Prescriptive Process Monitoring'. Samen vormen ze een unieke vingerafdruk.Prijzen
-
Best paper award
Kubrak, K. (Ontvanger), Botchorishvili, L. (Ontvanger), Milani, F. (Ontvanger), Nolte, A. (Ontvanger) & Dumas, M. (Ontvanger), sep. 2024
Prijs: Anders › Werk, activiteit of publicatie gerelateerde prijzen (lifetime, best paper, poster etc.) › Wetenschappelijk