Explanatory Capabilities of Large Language Models in Prescriptive Process Monitoring

Kateryna Kubrak, Lana Botchorishvili, Fredrik Milani, Alexander Nolte, Marlon Dumas (Corresponderende auteur)

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Downloads (Pure)

Samenvatting

Prescriptive process monitoring (PrPM) systems analyze ongoing business process instances to recommend real-time interventions that optimize performance. The usefulness of these systems hinges on users applying the generated recommendations. Thus, users need to understand the rationale behind these recommendations. One way to build this understanding is to enhance each recommendation with explanations. Existing approaches generate explanations consisting of static text or plots, which users often struggle to understand. Previous work has shown that dialogue systems enhance the effectiveness of explanations in recommender systems. Large Language Models (LLMs) are an emerging technology that facilitates the construction of dialogue systems. In this paper, we investigate the applicability of LLMs for generating explanations in PrPM systems. Following a design science approach, we elicit explainability questions that users may have for PrPM outputs, we design a prompting method on this basis, and we conduct an evaluation with potential users to assess their perception of the explanations and their approach to interact with the system. The results indicate that LLMs can help users of PrPM systems to better understand the origin of the recommendations, and to produce recommendations that have sufficient detail and fulfill their expectations. On the other hand, users find that the explanations do not always address the “why” of a recommendation and do not let them judge if they can trust the recommendation.

Originele taal-2Engels
TitelBusiness Process Management
Subtitel22nd International Conference, BPM 2024, Krakow, Poland, September 1–6, 2024, Proceedings
RedacteurenAndrea Marrella, Manuel Resinas, Mieke Jans, Michael Rosemann
Plaats van productieCham
UitgeverijSpringer
Pagina's403-420
Aantal pagina's18
ISBN van elektronische versie978-3-031-70396-6
ISBN van geprinte versie978-3-031-70395-9
DOI's
StatusGepubliceerd - 2 sep. 2024
Evenement22nd Business Process Management Conference 2024, BPM 2024 - Krakow, Polen
Duur: 1 sep. 20246 sep. 2024

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume14940
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres22nd Business Process Management Conference 2024, BPM 2024
Verkorte titelBPM 2024
Land/RegioPolen
StadKrakow
Periode1/09/246/09/24

Financiering

This research is supported by the Estonian Research Council (PRG1226) and the European Research Council (PIX Project).

FinanciersFinanciernummer
European Research Council

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Explanatory Capabilities of Large Language Models in Prescriptive Process Monitoring'. Samen vormen ze een unieke vingerafdruk.
    • Best paper award

      Kubrak, K. (Ontvanger), Botchorishvili, L. (Ontvanger), Milani, F. (Ontvanger), Nolte, A. (Ontvanger) & Dumas, M. (Ontvanger), sep. 2024

      Prijs: AndersWerk, activiteit of publicatie gerelateerde prijzen (lifetime, best paper, poster etc.)Wetenschappelijk

    Citeer dit