Explaining complex systems: a tutorial on transparency and interpretability in machine learning models (part II)

Donatello Materassi, Sean Warnick, Cristian Rojas, Maarten Schoukens, Elizabeth Cross

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

7 Downloads (Pure)

Samenvatting

In the second segment of the tutorial, we transition from the granularity of local interpretability to a broader exploration of eXplainable AI (XAI) methods. Building on the specific focus of the first part, which delved into Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), this section takes a more expansive approach. We will navigate through various XAI techniques of more global nature, covering counterfactual explanations, equation discovery, and the integration of physics-informed AI. Unlike the initial part, which concentrated on two specific methods, this section offers a general overview of these broader classes of techniques for explanation. The objective is to provide participants with a comprehensive understanding of the diverse strategies available for making complex machine learning models interpretable on a more global scale.

Originele taal-2Engels
Pagina's (van-tot)497-501
Aantal pagina's5
TijdschriftIFAC-PapersOnLine
Volume58
Nummer van het tijdschrift15
DOI's
StatusGepubliceerd - 1 jul. 2024
Evenement20th IFAC Symposium on System Identification, SYSID 2024 - Boston, Verenigde Staten van Amerika
Duur: 17 jul. 202419 jul. 2024
Congresnummer: 20

Bibliografische nota

Publisher Copyright:
© 2024 The Authors.

Financiering

M. Schoukens: This work is funded by the European Union (ERC, COMPLETE, 101075836). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Vingerafdruk

Duik in de onderzoeksthema's van 'Explaining complex systems: a tutorial on transparency and interpretability in machine learning models (part II)'. Samen vormen ze een unieke vingerafdruk.

Citeer dit