Explainable Machine Learning Based Prediction of Severity of Heart Failure Using Primary Electronic Health Records

Rajarajeswari Ganesan (Corresponderende auteur), Simon C. Habraken, Frans N. van de Vosse, Wouter Huberts

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

42 Downloads (Pure)

Samenvatting

Heart Failure (HF) is a life-threatening condition. It affects more than 64 million people worldwide. Early diagnosis of HF is extremely crucial. In this study, we propose utilization of machine learning (ML) models to predict severity of HF from primary Electronic Health Records (EHRs). We used a public dataset of 2008 HF patients for the study. Gaussian Naive Bayes, Random Forest and CatBoost methods were used for prediction. The study shows that CatBoost works best for the goal. In addition to that, the largest contributors for tree-based models harmonize well with clinically important parameters, which exhibits the trustworthiness of these models. Hence, we conclude that utilization of ML methods on primary EHRs is a promising step for time-efficient diagnosis of HF patients.

Originele taal-2Engels
TitelDigital Health and Informatics Innovations for Sustainable Health Care Systems
SubtitelProceedings of MIE 2024
RedacteurenJohn Mantas, Arie Hasman, George Demiris, Kaija Saranto, Michael Marschollek, Theodoros N. Arvanitis, Ivana Ognjanović, Arriel Benis, Parisis Gallos, Emmanouil Zoulias, Elisavet Andrikopoulou
UitgeverijIOS Press
Pagina's542-546
Aantal pagina's5
ISBN van elektronische versie978-1-64368-533-5
DOI's
StatusGepubliceerd - 22 aug. 2024
Evenement34th Medical Informatics Europe Conference, MIE 2024 - Athens, Griekenland
Duur: 25 aug. 202429 aug. 2024

Publicatie series

NaamStudies in Health Technology and Informatics
Volume316
ISSN van geprinte versie0926-9630
ISSN van elektronische versie1879-8365

Congres

Congres34th Medical Informatics Europe Conference, MIE 2024
Land/RegioGriekenland
StadAthens
Periode25/08/2429/08/24

Vingerafdruk

Duik in de onderzoeksthema's van 'Explainable Machine Learning Based Prediction of Severity of Heart Failure Using Primary Electronic Health Records'. Samen vormen ze een unieke vingerafdruk.

Citeer dit