Experimental Demonstration of Neural Network-based Soft Demapper for Long-haul Optical Transmission

Wenkai Fang, Bin Chen, Yi Lei, Can Zhao, Menno van den Hout, Sjoerd van der Heide, Chigo Okonkwo, Lin Sun, Xuwei Xue, Shanguo Huang

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

Experimental validation for a proposed neural network-based soft demapper is demonstrated. A reach increase of 9.8% and a demapping complexity reduction of 28.6% for PM-64QAM with 11× 450Gbps DWDM is achieved over the conventional demapper.

Originele taal-2Engels
Titel2023 Opto-Electronics and Communications Conference (OECC)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1-4
Aantal pagina's4
ISBN van elektronische versie978-1-6654-6213-6
DOI's
StatusGepubliceerd - 14 aug. 2023
Evenement2023 Opto-Electronics and Communications Conference (OECC) - Shanghai, China
Duur: 2 jul. 20236 jul. 2023

Congres

Congres2023 Opto-Electronics and Communications Conference (OECC)
Land/RegioChina
StadShanghai
Periode2/07/236/07/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Experimental Demonstration of Neural Network-based Soft Demapper for Long-haul Optical Transmission'. Samen vormen ze een unieke vingerafdruk.

Citeer dit