Experimental and modeling study of the effect of elevated pressure on lean high-hydrogen syngas flames

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

32 Citaten (Scopus)
120 Downloads (Pure)

Samenvatting

New laminar burning velocity measurements of 85:15% (by volume) H2–CO and H2–N2 mixtures with O2–He oxidizer are reported at lean conditions and elevated pressures (1–10 atm). Experiments are conducted using the heat flux method at initial temperature of 298 K. In this technique a near adiabatic flame is stabilized by balancing the heat loss from the flame to the burner with heat gain to the unburnt gas mixture such that no net heat loss to the burner is observed. A new facility was designed for such high pressure burner stabilized flame experiments. The results obtained are compared with five chemical kinetic schemes from literature for syngas mixtures at elevated pressures. Large differences are observed between the kinetic schemes and the experiments which can be attributed to certain key chemical reactions. A study of the kinetics is performed through reaction rate and sensitivity analysis which indicate that a high uncertainty still remains in important reactions that drive the production and consumption of species such as H, HO2 and OH. For lean mixtures the reaction H + O2(+M) = HO2(+M) contributes significantly to the deviation of models from the experiments. The present analysis in the lean mixture regime suggests the need for further studies in assessment and modification of rate constants for this reaction.
Originele taal-2Engels
Pagina's (van-tot)655-662
Aantal pagina's8
TijdschriftProceedings of the Combustion Institute
Volume35
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2015
Evenement35th International Symposium on Combustion - San Francisco, Verenigde Staten van Amerika
Duur: 3 aug 20148 aug 2014

Vingerafdruk Duik in de onderzoeksthema's van 'Experimental and modeling study of the effect of elevated pressure on lean high-hydrogen syngas flames'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit