Existence and uniqueness of solutions to Liouville's equation and the associated flow for Hamiltonians of bounded variation

B.S. Lith, van, J.H.M. Thije Boonkkamp, ten, W.L. IJzerman, T.W. Tukker

Onderzoeksoutput: Boek/rapportRapportAcademic

289 Downloads (Pure)

Samenvatting

We prove existence and uniqueness for solutions to Liouville's equation for Hamiltonians of bounded variation. These solutions can be interpreted as the limit of a sequence generated by a series of smooth approximations to the Hamiltonian. This results in a converging sequence of approximations of solutions to Liouville's equation. As an added perk, our method allows us to prove a generalisation of Liouville's theorem for Hamiltonians of bounded variation. Furthermore, we prove there exists a unique flow solution to the Hamilton equations and show how this can be used to construct a solution to Liouville's equation. Key words: partial differential equations, geometrical optics, Liouville's equation, flow.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijTechnische Universiteit Eindhoven
Aantal pagina's19
StatusGepubliceerd - 2014

Publicatie series

NaamCASA-report
Volume1434
ISSN van geprinte versie0926-4507

Vingerafdruk

Duik in de onderzoeksthema's van 'Existence and uniqueness of solutions to Liouville's equation and the associated flow for Hamiltonians of bounded variation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit