Existence and properties of the logarithmic layer in oscillating flows

Steven J. Kaptein, Matias Duran-Matute (Corresponding author), Federico Roman, Vincenzo Armenio, Herman J.H. Clercx

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)

Samenvatting

The existence and properties of the logarithmic layer in a turbulent streamwise oscillating flow are investigated through direct numerical simulations and wall-resolved large-eddy simulations. The phase dependence of the von Kármán constant and the logarithmic layer intercept is explored for different values of the Reynolds number and the depth-ratio between the water depth and the Stokes boundary layer thickness. The logarithmic layer exists for a longer fraction of the oscillating period and a larger fraction of the water depth with increasing values of the Reynolds number. However, the values of both the von Kármán and the intercept depend on the phase, the Reynolds number and depth-ratio. Additionally, the simulations characterized by a low value of the depth-ratio and Reynolds number show intermittent existence of the logarithmic layer. Finally, the Reynolds number based on the friction velocity does not support a previously mentioned analogy between oscillatory flows and steady wall-bounded flows.

Originele taal-2Engels
Pagina's (van-tot)687-700
Aantal pagina's14
TijdschriftIAHR Journal of Hydraulic Research
Volume58
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - 22 jul. 2020

Financiering

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
STW

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Existence and properties of the logarithmic layer in oscillating flows'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit