Existence and linear stability of solutions of the ballistic VSC model

J. Hulshof, R. Nolet, G. Prokert

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

12 Downloads (Pure)


An equation for the dynamics of the vesicle supply center model of tip growth in fungal hyphae is derived. For this we analytically prove the existence and uniqueness of a traveling wave solution which exhibits the experimentally observed behavior. The linearized dynamics around this solution is analyzed and we conclude that all eigenmodes decay in time. Numerical calculation of the first eigenvalue gives a timescale in which small perturbations will die out. Keywords: Fungal hyphae, cell growth, traveling wave, linear stability, free boundary problem.
Originele taal-2Engels
Pagina's (van-tot)35-51
Aantal pagina's17
TijdschriftDiscrete and Continuous Dynamical Systems - Series S
Nummer van het tijdschrift1
StatusGepubliceerd - 2014


Duik in de onderzoeksthema's van 'Existence and linear stability of solutions of the ballistic VSC model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit