Samenvatting
Using a particle swarm optimization algorithm (a population-based stochastic optimization technique) combined with 3D finite-difference time-domain simulations, we inverse design periodic arrays of metallic nanoparticles on indium-tin-oxide electrodes and nanoholes in metallic thin films working as electrodes in P3HT (Poly(3-hexylthiophene-2,5-diyl)):PCBM ([6,6]-Phenyl C61 butyric acid methyl ester) organic solar cells to achieve the maximum short-circuit currents (J s c). Nanohole-array electrodes have large optical losses, leading to a net reduction of J s c compared to a reference solar cell. On the other hand, nanoparticle arrays can lead to a significant enhancement of J s c of up to 20%. Detailed simulations show that this enhancement is caused by the grating coupling of the incident light to surface plasmon polaritons at the interface of the metal electrode and the hole transport layer, leading to the enhancement of the electromagnetic field in the organic blend.
Originele taal-2 | Engels |
---|---|
Artikelnummer | 153103 |
Aantal pagina's | 10 |
Tijdschrift | Journal of Applied Physics |
Volume | 132 |
Nummer van het tijdschrift | 15 |
DOI's | |
Status | Gepubliceerd - 21 okt. 2022 |
Bibliografische nota
Publisher Copyright:© 2022 Author(s).
Financiering
We thank Tom van der Pol for useful discussions and for providing the ellipsometry data of different materials. This work has been financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) (Vici Grant No. 680-47-628). P.B. is partly sponsored by the China Scholarship Council.