Samenvatting
Predictive process monitoring is a subfield of process mining that aims to estimate case or event features for running process instances. Such predictions are of significant interest to the process stakeholders. However, state-of-the-art methods for predictive monitoring require the training of complex machine learning models, which is often inefficient. This paper proposes an instance selection procedure that allows sampling training process instances for prediction models. We show that our sampling method allows for a significant increase of training speed for next activity prediction methods while maintaining reliable levels of prediction accuracy.
Originele taal-2 | Engels |
---|---|
Titel | Process Mining Workshops - ICPM 2021 International Workshops, Revised Selected Papers |
Subtitel | ICPM 2021 International Workshops, Eindhoven, The Netherlands, October 31 – November 4, 2021, Revised Selected Papers |
Redacteuren | Jorge Munoz-Gama, Xixi Lu |
Plaats van productie | Cham |
Uitgeverij | Springer |
Pagina's | 154-166 |
Aantal pagina's | 13 |
ISBN van elektronische versie | 978-3-030-98581-3 |
ISBN van geprinte versie | 978-3-030-98580-6 |
DOI's | |
Status | Gepubliceerd - 2022 |
Evenement | 2nd International Workshop on Leveraging Machine Learning in Process Mining, ML4PM 2021 - Eindhoven, Nederland Duur: 31 okt. 2021 → 4 nov. 2021 Congresnummer: 2 http://ml4pm2021.di.unimi.it/ |
Publicatie series
Naam | Lecture Notes in Business Information Processing |
---|---|
Volume | 433 |
ISSN van geprinte versie | 1865-1348 |
ISSN van elektronische versie | 1865-1356 |
Workshop
Workshop | 2nd International Workshop on Leveraging Machine Learning in Process Mining, ML4PM 2021 |
---|---|
Verkorte titel | ML4PM 2021 |
Land/Regio | Nederland |
Stad | Eindhoven |
Periode | 31/10/21 → 4/11/21 |
Internet adres |