Evaluation of the Robustness of Learned MR Image Reconstruction to Systematic Deviations Between Training and Test Data for the Models from the fastMRI Challenge

Patricia M. Johnson, Geunu Jeong, Kerstin Hammernik, Jo Schlemper, Chen Qin, Jinming Duan, Daniel Rueckert, Jingu Lee, Nicola Pezzotti, Elwin De Weerdt, Sahar Yousefi, Mohamed S. Elmahdy, Jeroen Hendrikus Franciscus Van Gemert, Christophe Schülke, Mariya Doneva, Tim Nielsen, Sergey Kastryulin, Boudewijn P. F. Lelieveldt, Matthias J. P. Van Osch, Marius StaringEric Z. Chen, Puyang Wang, Xiao Chen, Terrence Chen, Vishal M. Patel, Shanhui Sun, Hyungseob Shin, Yohan Jun, Taejoon Eo, Sewon Kim, Taeseong Kim, Dosik Hwang, Patrick Putzky, Dimitrios Karkalousos, Jonas Teuwen, Nikita Miriakov, Bart Bakker, Matthan Caan, Max Welling, Matthew J. Muckley, Florian Knoll

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

The 2019 fastMRI challenge was an open challenge designed to advance research in the field of machine learning for MR image reconstruction. The goal for the participants was to reconstruct undersampled MRI k-space data. The original challenge left an open question as to how well the reconstruction methods will perform in the setting where there is a systematic difference between training and test data. In this work we tested the generalization performance of the submissions with respect to various perturbations, and despite differences in model architecture and training, all of the methods perform very similarly.
Originele taal-2Engels
TitelMachine Learning for Medical Image Reconstruction - 4th International Workshop, MLMIR 2021, Held in Conjunction with MICCAI 2021, Proceedings
Subtitel4th International Workshop, MLMIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings
RedacteurenNandinee Haq, Patricia Johnson, Andreas Maier, Tobias Würfl, Jaejun Yoo
UitgeverijSpringer Nature
Pagina's25-34
Aantal pagina's10
ISBN van elektronische versie978-3-030-88552-6
ISBN van geprinte versie978-3-030-88551-9
DOI's
StatusGepubliceerd - 25 sep. 2021

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12964 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Vingerafdruk

Duik in de onderzoeksthema's van 'Evaluation of the Robustness of Learned MR Image Reconstruction to Systematic Deviations Between Training and Test Data for the Models from the fastMRI Challenge'. Samen vormen ze een unieke vingerafdruk.

Citeer dit