Euler flow solutions for transonic wind tunnel section

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    32 Downloads (Pure)

    Samenvatting

    Steady, 2D Euler flow computations have been performed for a wind tunnel section, designed for research on transonic shock wave - boundary layer interaction. For the discretization of the steady Euler equations, an upwind finite volume technique has been applied. The solution method used is collective, symmetric point Gauss-Seidel relaxation, accelerated by nonlinear multigrid. Initial finest grid solutions have been obtained by nested iteration. Automatic grid adaptation has been applied for obtaining sharp shocks. An indication is given of the mathematical quality of four different boundary conditions for the outlet flow. Two transonic flow solutions with shock are presented; a choked and a non-choked flow. Both flow solutions show a good shock capturing. A comparison is made with results obtained by holographic interferometry. Keywords: steady Euler equations - transonic flows - mutigrid methods - grid generation and adaptation - boundary conditions
    Originele taal-2Engels
    TitelPapers Presented at the V. Aerodynamic Seminar of Lehrgebiet Aerodynamik Des Fluges, Technical University Aachen (RWTH) on July (5 - 7), 1987
    RedacteurenA. Nastase
    Plaats van productieHanau
    UitgeverijHaag + Herchen
    Pagina's14-26
    ISBN van geprinte versie9783925714320
    StatusGepubliceerd - 1990

    Publicatie series

    NaamProceedings of High Speed Aerodynamics
    VolumeII

    Vingerafdruk Duik in de onderzoeksthema's van 'Euler flow solutions for transonic wind tunnel section'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Koren, B. (1990). Euler flow solutions for transonic wind tunnel section. In A. Nastase (editor), Papers Presented at the V. Aerodynamic Seminar of Lehrgebiet Aerodynamik Des Fluges, Technical University Aachen (RWTH) on July (5 - 7), 1987 (blz. 14-26). (Proceedings of High Speed Aerodynamics; Vol. II). Haag + Herchen.