Equivariant Parameter Sharing for Porous Crystalline Materials

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
1 Downloads (Pure)

Samenvatting

Efficiently predicting properties of porous crystalline materials has great potential to accelerate the high throughput screening process for developing new materials, as simulations carried out using first principles models are often computationally expensive. To effectively make use of Deep Learning methods to model these materials, we need to utilize the symmetries present in crystals, which are defined by their space group. Existing methods for crystal property prediction either have symmetry constraints that are too restrictive or only incorporate symmetries between unit cells. In addition, these models do not explicitly model the porous structure of the crystal. In this paper, we develop a model which incorporates the symmetries of the unit cell of a crystal in its architecture and explicitly models the porous structure. We evaluate our model by predicting the heat of adsorption of CO2 for different configurations of the mordenite and ZSM-5 zeolites. Our results confirm that our method performs better than existing methods for crystal property prediction and that the inclusion of pores results in a more efficient model.

Originele taal-2Engels
TitelAdvances in Intelligent Data Analysis XXII
Subtitel22nd International Symposium on Intelligent Data Analysis, IDA 2024, Stockholm, Sweden, April 24–26, 2024, Proceedings, Part I
RedacteurenIoanna Miliou, Nico Piatkowski, Panagiotis Papapetrou
Plaats van productieCham
UitgeverijSpringer
Pagina's129-140
Aantal pagina's12
ISBN van elektronische versie978-3-031-58547-0
ISBN van geprinte versie978-3-031-58546-3
DOI's
StatusGepubliceerd - 16 apr. 2024
Evenement22nd International Symposium on Intelligent Data Analysis, IDA 2024 - Stockholm, Zweden
Duur: 24 apr. 202426 apr. 2024

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume14641
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres22nd International Symposium on Intelligent Data Analysis, IDA 2024
Land/RegioZweden
StadStockholm
Periode24/04/2426/04/24

Vingerafdruk

Duik in de onderzoeksthema's van 'Equivariant Parameter Sharing for Porous Crystalline Materials'. Samen vormen ze een unieke vingerafdruk.

Citeer dit