Epidemiological Forecasting with Model Reduction of Compartmental Models: Application to the COVID-19 Pandemic

A. Bakhta, T. Boiveau, Y. Maday, O. Mula (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

16 Citaten (Scopus)

Samenvatting

We propose a forecasting method for predicting epidemiological health series on a two-week horizon at regional and interregional resolution. The approach is based on the model order reduction of parametric compartmental models and is designed to accommodate small amounts of sanitary data. The efficiency of the method is shown in the case of the prediction of the number of infected people and people removed from the collected data, either due to death or recovery, during the two pandemic waves of COVID-19 in France, which took place approximately between February and November 2020. Numerical results illustrate the promising potential of the approach.
Originele taal-2Engels
Artikelnummer22
TijdschriftBiology
Volume10
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - jan. 2021
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Epidemiological Forecasting with Model Reduction of Compartmental Models: Application to the COVID-19 Pandemic'. Samen vormen ze een unieke vingerafdruk.

Citeer dit