Entropy stable discontinuous Galerkin finite element moment methods for compressible fluid dynamics

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Downloads (Pure)

Samenvatting

In this work we propose numerical approximations of the Boltzmann equation that are consistent with the Euler and Navier–Stoke–Fourier solutions. We conceive of the Euler and the Navier–Stokes–Fourier equations as moment approximations of the Boltzmann equation in renormalized form. Such renormalizations arise from the so-called Chapman-Enskog analysis of the one-particle marginal in the Boltzmann equation. We present a numerical approximation of the Boltzmann equation that is based on the discontinuous Galerkin method in position dependence and on the renormalized-moment method in velocity dependence. We show that the resulting discontinuous Galerkin finite element moment method is entropy stable. Numerical results are presented for turbulent flow in the lid-driven cavity benchmark.

Originele taal-2Engels
TitelNumerical Methods for Flows
SubtitelFEF 2017 Selected Contributions
RedacteurenHarald van Brummelen, Alessandro Corsini, Simona Perotto, Gianluigi Rozza
Plaats van productieCham
UitgeverijSpringer
Pagina's75-95
Aantal pagina's21
ISBN van elektronische versie978-3-030-30705-9
ISBN van geprinte versie978-3-030-30704-2
DOI's
StatusGepubliceerd - 1 jan 2020
Evenement19th International Conference on Finite Elements in Flow Problems, FEF 2017 - Rome, Italië
Duur: 5 apr 20177 apr 2017

Publicatie series

NaamLecture Notes in Computational Science and Engineering
Volume132
ISSN van geprinte versie1439-7358
ISSN van elektronische versie2197-7100

Congres

Congres19th International Conference on Finite Elements in Flow Problems, FEF 2017
Land/RegioItalië
StadRome
Periode5/04/177/04/17

Vingerafdruk

Duik in de onderzoeksthema's van 'Entropy stable discontinuous Galerkin finite element moment methods for compressible fluid dynamics'. Samen vormen ze een unieke vingerafdruk.

Citeer dit