End-to-End Learning in Optical Fiber Communications: Experimental Demonstration and Future Trends

Boris Karanov, Vinícius Oliari, Mathieu Chagnon, Gabriele Liga, Alex Alvarado, Vahid Aref, Domanic Lavery, Polina Bayvel, Laurent Schmalen

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

104 Downloads (Pure)

Samenvatting

Fiber-optic auto-encoders are demonstrated on an intensity modulation/direct detection testbed, outperforming state-of-the-art signal processing. Algorithms for end-to-end optimization using experimentally collected data are discussed. The end-to-end learning framework is extended for performing optimization of the symbol distribution in probabilistically-shaped coherent systems.

Originele taal-2Engels
Titel2020 European Conference on Optical Communications, ECOC 2020
UitgeverijInstitute of Electrical and Electronics Engineers
ISBN van elektronische versie9781728173610
DOI's
StatusGepubliceerd - 4 feb 2021
Evenement46th European Conference on Optical Communications (ECOC 2020) - Virtual, Brussels, België
Duur: 6 dec 202010 dec 2020
Congresnummer: 46

Congres

Congres46th European Conference on Optical Communications (ECOC 2020)
Verkorte titelECOC 2020
Land/RegioBelgië
StadVirtual, Brussels
Periode6/12/2010/12/20

Bibliografische nota

Publisher Copyright:
© 2020 IEEE.

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Vingerafdruk

Duik in de onderzoeksthema's van 'End-to-End Learning in Optical Fiber Communications: Experimental Demonstration and Future Trends'. Samen vormen ze een unieke vingerafdruk.

Citeer dit