Encore Abstract: Presumably Correct Decision Sets

Gonzalo Nápoles, Isel Grau, Agnieszka Jastrzębska, Yamisleydi Salgueiro

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

The paper presents the presumably correct decision sets as a tool to analyze uncertainty in the form of inconsistency in decision systems. As a first step, problem instances are gathered into three regions containing weak members, borderline members, and strong members. This is accomplished by using the membership degrees of instances to their neighborhoods while neglecting their actual labels. As a second step, we derive the presumably correct and incorrect sets by contrasting the decision classes determined by a neighborhood function with the actual decision classes. We extract these sets from either the regions containing strong members or the whole universe, which defines the strict and
relaxed versions of our theoretical formalism. These sets allow isolating the instances difficult to handle by machine learning algorithms as they are responsible for inconsistent patterns. The simulations using synthetic and real-world datasets illustrate the advantages of our model compared to rough sets, which is deemed a solid state-of-the-art approach to cope with inconsistency. In particular, it is shown that we can increase the accuracy of selected classifiers up to 36% by weighting the presumably correct and incorrect instances during the training process.
Originele taal-2Engels
TitelPre-proceedings of the Joint International Scientific Conferences On AI And Machine Learning BNAIC/BeNeLearn 2023
UitgeverijTU Delft Open
Pagina's1-3
StatusGepubliceerd - nov. 2023
EvenementThe 35th Artificial Intelligence and 32nd Machine Learning Conferences of the Benelux, BNAIC/BENELEARN 2023 - Delft, Nederland
Duur: 8 nov. 202310 nov. 2023

Congres

CongresThe 35th Artificial Intelligence and 32nd Machine Learning Conferences of the Benelux, BNAIC/BENELEARN 2023
Land/RegioNederland
StadDelft
Periode8/11/2310/11/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Encore Abstract: Presumably Correct Decision Sets'. Samen vormen ze een unieke vingerafdruk.
  • Presumably correct decision sets

    Nápoles, G. (Corresponding author), Grau, I., Jastrzębska, A. & Salgueiro, Y., sep. 2023, In: Pattern Recognition. 141, 10 blz., 109640.

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    Open Access
    Bestand
    2 Citaten (Scopus)
    28 Downloads (Pure)
  • Presumably correct undersampling

    Nápoles, G. & Grau, I., 27 nov. 2023, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 26th Iberoamerican Congress, CIARP 2023, Coimbra, Portugal, November 27–30, 2023, Proceedings, Part I. Vasconcelos, V., Domingues, I. & Paredes, S. (uitgave). Cham: Springer, blz. 420–433 14 blz. (Lecture Notes in Computer Science (LNCS); vol. 14469).

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Citeer dit