Enabling Analysis and Reasoning on Software Systems through Knowledge Graph Representation

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

This work presents a knowledge-representation-based approach for analysing software systems. Its main components are: a generic and extensible knowledge model, and a knowledge extractor tool that generates instance-level knowledge graphs from software repositories (currently Java). Our knowledge model can be used as a shared data-model in a software analysis pipeline. We illustrate the potential uses of our knowledge representation by performing experimental architecture recovery and identifying design pattern instance. We intend to use our ontology and extraction tool as a partial foundation for automated reasoning on software systems.

Originele taal-2Engels
Titel2023 IEEE/ACM 20th International Conference on Mining Software Repositories, MSR 2023
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's120-124
Aantal pagina's5
ISBN van elektronische versie979-8-3503-1184-6
DOI's
StatusGepubliceerd - 12 jul. 2023
Evenement20th IEEE/ACM International Conference on Mining Software Repositories, MSR 2023 - Melbourne, Australië
Duur: 15 mei 202316 mei 2023

Congres

Congres20th IEEE/ACM International Conference on Mining Software Repositories, MSR 2023
Land/RegioAustralië
StadMelbourne
Periode15/05/2316/05/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Enabling Analysis and Reasoning on Software Systems through Knowledge Graph Representation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit