Empirical Generalization Study: Unsupervised Domain Adaptation vs. Domain Generalization Methods for Semantic Segmentation in the Wild

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

7 Citaten (Scopus)
18 Downloads (Pure)

Samenvatting

For autonomous vehicles and mobile robots to safely operate in the real world, i.e., the wild, scene understanding models should perform well in the many different scenarios that can be encountered. In reality, these scenarios are not all represented in the model’s training data, leading to poor performance. To tackle this, current training strategies attempt to either exploit additional unlabeled data with unsupervised domain adaptation (UDA), or to reduce overfitting using the limited available labeled data with domain generalization (DG). However, it is not clear from current literature which of these methods allows for better generalization to unseen data from the wild. Therefore, in this work, we present an evaluation framework in which the generalization capabilities of state-of-the-art UDA and DG methods can be compared fairly. From this evaluation, we find that UDA methods, which leverage unlabeled data, outperform DG methods in terms of generalization, and can deliver similar performance on unseen data as fully-supervised training methods that require all data to be labeled. We show that semantic segmentation performance can be increased up to 30% for a priori unknown data without using any extra labeled data.
Originele taal-2Engels
Titel2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's499-508
Aantal pagina's10
ISBN van elektronische versie978-1-6654-9346-8
ISBN van geprinte versie978-1-6654-9347-5
DOI's
StatusGepubliceerd - 6 feb. 2023
Evenement2023 IEEE Winter Conference on Applications of Computer Vision, WACV - Waikoloa, Verenigde Staten van Amerika
Duur: 2 jan. 20237 jan. 2023

Congres

Congres2023 IEEE Winter Conference on Applications of Computer Vision, WACV
Land/RegioVerenigde Staten van Amerika
StadWaikoloa
Periode2/01/237/01/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Empirical Generalization Study: Unsupervised Domain Adaptation vs. Domain Generalization Methods for Semantic Segmentation in the Wild'. Samen vormen ze een unieke vingerafdruk.

Citeer dit