ELSE: Efficient Deep Neural Network Inference Through Line-Based Sparsity Exploration

Zeqi Zhu (Corresponderende auteur), Alberto Garcia-Ortiz, Luc Waeijen, Egor Bondarev, Arash Pourtaherian, Orlando Moreira

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Downloads (Pure)

Samenvatting

Brain-inspired computer architecture facilitates low-power, low-latency deep neural network inference for embedded AI applications. The hardware performance crucially hinges on the quantity of non-zero activations (i.e., events) during inference. Thus, we propose a novel event suppression method, dubbed ELSE, which enhances inference Efficiency via Line-based Sparsity Exploration. Specifically, it exploits spatial correlation between adjacent lines in activation maps to reduce network events. ELSE reduces event-triggered computations by 3.14–6.49× for object detection and by 2.43–5.75× for pose estimation across various network architectures compared to conventional processing. Additionally, we show that combining ELSE with other event suppression methods can either significantly enhance computation savings for spatial suppression or reduce state memory footprint by >2× for temporal suppression. The latter alleviates the challenge of temporal execution exceeding the resource constraints of real-world embedded platforms. These results highlight ELSE’s significant event suppression ability and its capacity to deliver complementary performance enhancements for SOTA methods.

Originele taal-2Engels
TitelComputer Vision – ECCV 2024
Subtitel18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part XI
RedacteurenAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
Plaats van productieCham
UitgeverijSpringer
Pagina's412-431
Aantal pagina's20
ISBN van elektronische versie978-3-031-73247-8
ISBN van geprinte versie978-3-031-73246-1
DOI's
StatusGepubliceerd - 1 nov. 2024
Evenement18th European Conference on Computer Vision, ECCV 2024 - Milan, Italië
Duur: 29 sep. 20244 okt. 2024

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume15069
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres18th European Conference on Computer Vision, ECCV 2024
Land/RegioItalië
StadMilan
Periode29/09/244/10/24

Vingerafdruk

Duik in de onderzoeksthema's van 'ELSE: Efficient Deep Neural Network Inference Through Line-Based Sparsity Exploration'. Samen vormen ze een unieke vingerafdruk.

Citeer dit