Efficiently assessing the early-age cracking risk of cementitious materials with a mini temperature stress testing machine

Minfei Liang, Ze Chang (Corresponding author), Patrick Holthuizen, Yu Chen, Shan He, Erik Schlangen, Branko Šavija

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
4 Downloads (Pure)

Samenvatting

Temperature Stress Testing Machine (TSTM) is a universal testing tool for many properties relevant to early-age cracking of cementitious materials. However, the complexity of TSTMs require heavy lab work and thus hinders a more thorough parametric study on a range of cementitious materials. This study presents the development and validation of a Mini-TSTM for efficiently testing the autogenous deformation (AD), viscoelastic properties, and their combined results, the early-age stress (EAS). The setup was validated through systematic tests of EAS, AD, elastic modulus, and creep. Besides, the heating/cooling capability of the setup was examined by tests of coefficient of thermal expansion by temperature cycles. The results of EAS correspond well to that of AD, which qualitatively validates the developed setup. To quantitatively validate the setup, a classical viscoelastic model was built, based on the scenario of a 1-D uniaxial restraint test, to predict the EAS results with the tested AD, elastic modulus, and creep of the same cementitious material as the input. The predicted EAS matched the testing results of Mini-TSTM with good accuracy in 6 different cases. The viscoelastic model also provided quantitative explanations for why variations in early AD do not influence the EAS results. The testing and modelling results together validate the developed Mini-TSTM setup as an efficient tool for studying early-age cracking of cementitious materials. At the end, the potential limitations of the Mini-TSTM are discussed and its applicability for concrete with aggregate size up to 22 mm is demonstrated.

Originele taal-2Engels
Artikelnummer105710
Aantal pagina's20
TijdschriftCement and Concrete Composites
Volume153
DOI's
StatusGepubliceerd - okt. 2024

Bibliografische nota

Publisher Copyright:
© 2024 The Authors

Vingerafdruk

Duik in de onderzoeksthema's van 'Efficiently assessing the early-age cracking risk of cementitious materials with a mini temperature stress testing machine'. Samen vormen ze een unieke vingerafdruk.

Citeer dit