Efficient Scenario Generation for Heavy-Tailed Chance Constrained Optimization

Jose Blanchet, Fan Zhang (Corresponding author), Bert Zwart

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
3 Downloads (Pure)

Samenvatting

We consider a generic class of chance-constrained optimization problems with heavy-tailed (i.e., power-law type) risk factors. As the most popular generic method for solving chance constrained optimization, the scenario approach generates sampled optimization problem as a precise approximation with provable reliability, but the computational complexity becomes intractable when the risk tolerance parameter is small. To reduce the complexity, we sample the risk factors from a conditional distribution given that the risk factors are in an analytically tractable event that encompasses all the plausible events of constraints violation. Our approximation is proven to have optimal value within a constant factor to the optimal value of the original chance constraint problem with high probability, uniformly in the risk tolerance parameter. To the best of our knowledge, our result is the first uniform performance guarantee of this type. We additionally demonstrate the efficiency of our algorithm in the context of solvency in portfolio optimization and insurance networks.

Originele taal-2Engels
Pagina's (van-tot)22-46
Aantal pagina's25
TijdschriftStochastic Systems
Volume14
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - mrt. 2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Efficient Scenario Generation for Heavy-Tailed Chance Constrained Optimization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit