Efficient Model Evidence Computation in Tree-structured Factor Graphs

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
1 Downloads (Pure)

Samenvatting

Model evidence is a fundamental performance measure in Bayesian machine learning as it represents how well a model fits an observed data set. Since model evidence is often an intractable quantity, the literature often resorts to computing instead the Bethe Free Energy (BFE), which for cyclefree models is a tractable upper bound on the (negative log-) model evidence. In this paper, we propose a different and faster evidence computation approach by tracking local normalization constants of sum-product messages, termed scale factors. We tabulate scale factor update rules for various elementary factor nodes and by experimental validation we verify the correctness of these update rules for models involving both discrete and continuous variables. We show how tracking scale factors leads to performance improvements compared to the traditional BFE computation approach.
Originele taal-2Engels
Titel2022 IEEE Workshop on Signal Processing Systems (SiPS)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1-6
Aantal pagina's6
ISBN van elektronische versie978-1-6654-8524-1
ISBN van geprinte versie978-1-6654-8525-8
DOI's
StatusGepubliceerd - 25 okt. 2022
Evenement36th IEEE Workshop on Signal Processing Systems, SiPS 2022 - Rennes, Frankrijk
Duur: 2 nov. 20224 nov. 2022
Congresnummer: 36

Congres

Congres36th IEEE Workshop on Signal Processing Systems, SiPS 2022
Verkorte titelSiPS 2022
Land/RegioFrankrijk
StadRennes
Periode2/11/224/11/22

Vingerafdruk

Duik in de onderzoeksthema's van 'Efficient Model Evidence Computation in Tree-structured Factor Graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit