Efficient detection of multivariate correlations with different correlation measures

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
62 Downloads (Pure)

Samenvatting

Correlation analysis is an invaluable tool in many domains, for better understanding the data and extracting salient insights. Most works to date focus on detecting high pairwise correlations. A generalization of this problem with known applications but no known efficient solutions involves the discovery of strong multivariate correlations, i.e., finding vectors (typically in the order of 3–5 vectors) that exhibit a strong dependence when considered altogether. In this work, we propose algorithms for detecting multivariate correlations in static and streaming data. Our algorithms, which rely on novel theoretical results, support four different correlation measures, and allow for additional constraints. Our extensive experimental evaluation examines the properties of our solution and demonstrates that our algorithms outperform the state-of-the-art, typically by an order of magnitude.

Originele taal-2Engels
Pagina's (van-tot)481-505
Aantal pagina's25
TijdschriftThe VLDB Journal
Volume33
Nummer van het tijdschrift2
Vroegere onlinedatum11 okt. 2023
DOI's
StatusGepubliceerd - mrt. 2024

Financiering

This work has received funding from the European Union’s Horizon Europe research and innovation programme STELAR under Grant Agreement No. 101070122.

FinanciersFinanciernummer
European Union’s Horizon Europe research and innovation programme101070122

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Efficient detection of multivariate correlations with different correlation measures'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit