Efficient catheter segmentation in 3D cardiac ultrasound using slice-based FCN with deep supervision and F-score loss

Hongxu Yang, Caifeng Shan, Alexander F. Kolen, Peter de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

8 Citaten (Scopus)

Samenvatting

Fast and accurate catheter segmentation in 3D ultrasound (US) can improve the outcome and efficiency of cardiac interventions. In this paper, we propose an efficient catheter segmentation method based on a fully convolutional neural network (FCN). The FCN is based on a pre-trained VGG-16 model, which processes the 3D US volumes slice by slice. To enhance its performance, we modify its structure by skipping connections under a deep supervision structure, which is learned with an F-score loss function. Our method can exploit more contextual information and increase the detection of catheter-like voxels. We collected a challenging ex-vivo dataset (92 3D US images) from porcine hearts with an RF-ablation catheter inside. Our experiments on this dataset show that the proposed method achieves a segmentation performance with an F 2 score of 65.2% with a highly efficient inference around 1.1 sec. per volume.
Originele taal-2Engels
Titel2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
UitgeverijIEEE Computer Society
Pagina's260-264
Aantal pagina's5
ISBN van elektronische versie978-1-5386-6249-6
DOI's
StatusGepubliceerd - sep. 2019
Evenement26th IEEE International Conference on Image Processing (ICIP 2019) - Taipei, Taiwan, Taipei, Taiwan
Duur: 22 sep. 201925 sep. 2019

Congres

Congres26th IEEE International Conference on Image Processing (ICIP 2019)
Verkorte titelICIP 2019
Land/RegioTaiwan
StadTaipei
Periode22/09/1925/09/19

Vingerafdruk

Duik in de onderzoeksthema's van 'Efficient catheter segmentation in 3D cardiac ultrasound using slice-based FCN with deep supervision and F-score loss'. Samen vormen ze een unieke vingerafdruk.

Citeer dit