Effects of the diphenyl ether additive in halogen-free processed non-fullerene acceptor organic solar cells

Lorenzo Di Mario, David Garcia Romero, Meike J. Pieters, Fabian Eller, Chenhui Zhu, Giovanni Bongiovanni, Eva M. Herzig, Andrea Mura, Maria A. Loi (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

18 Citaten (Scopus)
28 Downloads (Pure)


The development of an environmentally friendly fabrication process for non-fullerene acceptor organic solar cells is an essential condition for their commercialization. However, devices fabricated by processing the active layer with green solvents still struggle to reach, in terms of efficiency, the same performance as those fabricated with halogenated solvents. The reason behind this is the non-optimal nanostructure of the active layer obtained with green solvents. Additives in solution have been used to fine-tune the nanostructure and improve the performance of organic solar cells. Therefore, the identification of non-halogenated additives and the study of their effects on the device performance and stability are of primary importance. In this work, we propose the use of diphenyl ether (DPE) as additive, in combination with the non-halogenated solvent o-xylene, to fabricate organic solar cells with a completely halogen-free process. Thanks to the addition of DPE, a best efficiency of 11.7% have been obtained for the system TPD-3F:IT-4F, an increase over 15% with respect to the efficiency of devices fabricated without additive. Remarkably, the stability under illumination of the solar cells is also improved when DPE is used. The addition of DPE has effects on the molecular organization in the active layer, with an enhancement in the donor polymer ordering, showing a higher domain purity. The resulting structure improves the charge carrier collection, leading to a superior short-circuit current and fill factor. Furthermore, a reduction of the non-radiative recombination losses and an improved exciton diffusion, are the results of the superior molecular ordering. With a comprehensive insight of the effects of DPE when used in combination with a non-halogenated solvent, our study provides an approach to make the fabrication of organic solar cell environmentally friendlier and more suitable for large scale production.
Originele taal-2Engels
Pagina's (van-tot)2419-2430
Aantal pagina's12
TijdschriftJournal of Materials Chemistry A
Nummer van het tijdschrift5
Vroegere onlinedatum16 jan. 2023
StatusGepubliceerd - 7 feb. 2023
Extern gepubliceerdJa


Duik in de onderzoeksthema's van 'Effects of the diphenyl ether additive in halogen-free processed non-fullerene acceptor organic solar cells'. Samen vormen ze een unieke vingerafdruk.

Citeer dit