Effective Scaling of High-Fidelity Electric Motor Models for Electric Powertrain Design Optimization

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Downloads (Pure)

Samenvatting

In general, electric motor design procedures for automotive applications go through expensive trial-and-error processes or use simplified models that linearly stretch the efficiency map. In this paper, we explore the possibility of efficiently optimizing the motor design directly, using high-fidelity simulation software and derivative-free optimization solvers. In particular, we proportionally scale an already existing electric motor design in axial and radial direction, as well as the sizes of the magnets and slots separately, in commercial motor design software. We encapsulate this motor model in a vehicle model together with the transmission, simulate a candidate design on a drive cycle, and find an optimum through a Bayesian optimization solver. We showcase our framework on a small city car, and observe an energy consumption reduction of 0.13 % with respect to a completely proportional scaling method, with a motor that is equipped with relatively shorter but wider magnets and slots. In the extended version of this paper, we include a comparison with the linear models, and add experiments on different drive cycles and vehicle types.

Originele taal-2Engels
Titel2023 IEEE Vehicle Power and Propulsion Conference, VPPC 2023
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's4
ISBN van elektronische versie979-8-3503-4445-5
DOI's
StatusGepubliceerd - 30 jan. 2024
Evenement19th IEEE Vehicle Power and Propulsion Conference, VPPC 2023 - Milan, Italië
Duur: 24 okt. 202327 okt. 2023

Congres

Congres19th IEEE Vehicle Power and Propulsion Conference, VPPC 2023
Verkorte titelVPPC 2023
Land/RegioItalië
StadMilan
Periode24/10/2327/10/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Effective Scaling of High-Fidelity Electric Motor Models for Electric Powertrain Design Optimization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit