TY - JOUR
T1 - Effect of Solvent Removal Rate and Annealing on the Interface Properties in a Blend of a Diketopyrrolopyrrole-Based Polymer with Fullerene
AU - Sundaram, Vivek
AU - Lyulin, Alexey V.
AU - Baumeier, Björn
N1 - Funding Information:
Funding for this work was provided by The Netherlands Organisation for Scientific Research (NWO) and The Netherlands eScience Center for funding through Project Number 027.017.G15, within the Joint CSER and eScience program for Energy Research (JCER 2017). B.B. also acknowledges support by the Innovational Research Incentives Scheme Vidi of the NWO, with Project Number 723.016.002.
Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/9/29
Y1 - 2022/9/29
N2 - We study the effect of solvent-free annealing and explicit solvent evaporation protocols in classical molecular dynamics simulations on the interface properties of a blend of a diketopyrrolopyrrole (DPP) polymer with conjugated substituents (DPP2Py2T) and PCBM[60]. We specifically analyze the intramolecular segmental mobility of the different polymer building blocks as well as intermolecular radial and angular distribution functions between donor and acceptor. The annealing simulations reveal an increase of the glass-transition temperature of 45 K in the polymer-fullerene blend compared to that of pure DPP2Py2T. Our results show that the effective solvent evaporation rates at room temperature only have a minor influence on the segmental mobility and intermolecular orientation, characterized in all cases by a preferential arrangement of PCBM[60] close to the electron-donating substituents in DPP2Py2T. In contrast, solvent-free annealing from a liquid yields clustering of the fullerene close to the electron-withdrawing DPP, generally considered to be detrimental for application in organic solar cells. We find that the difference can be attributed to differences in the behavior of 2-hexyldecyl side-chains, which collapse toward DPP when solvent is explicitly removed, thereby blocking access of PCBM[60].
AB - We study the effect of solvent-free annealing and explicit solvent evaporation protocols in classical molecular dynamics simulations on the interface properties of a blend of a diketopyrrolopyrrole (DPP) polymer with conjugated substituents (DPP2Py2T) and PCBM[60]. We specifically analyze the intramolecular segmental mobility of the different polymer building blocks as well as intermolecular radial and angular distribution functions between donor and acceptor. The annealing simulations reveal an increase of the glass-transition temperature of 45 K in the polymer-fullerene blend compared to that of pure DPP2Py2T. Our results show that the effective solvent evaporation rates at room temperature only have a minor influence on the segmental mobility and intermolecular orientation, characterized in all cases by a preferential arrangement of PCBM[60] close to the electron-donating substituents in DPP2Py2T. In contrast, solvent-free annealing from a liquid yields clustering of the fullerene close to the electron-withdrawing DPP, generally considered to be detrimental for application in organic solar cells. We find that the difference can be attributed to differences in the behavior of 2-hexyldecyl side-chains, which collapse toward DPP when solvent is explicitly removed, thereby blocking access of PCBM[60].
UR - http://www.scopus.com/inward/record.url?scp=85138769650&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcb.2c04609
DO - 10.1021/acs.jpcb.2c04609
M3 - Article
C2 - 36122390
SN - 1520-6106
VL - 126
SP - 7445
EP - 7453
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 38
ER -