EDP-convergence for nonlinear fast-slow reaction systems with detailed balance

Alexander Mielke, Mark A. Peletier (Corresponding author), Artur Stephan

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)
36 Downloads (Pure)


We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange multipliers and a set of nonlinear constraints that ask the fast reactions to be in equilibrium. Our aim is to study the limiting gradient structure which is available if the reaction system satisfies the detailed-balance condition. The gradient structure on the set of concentration vectors is given in terms of the relative Boltzmann entropy and a cosh-type dissipation potential. We show that a limiting or effective gradient structure can be rigorously derived via EDP-convergence, i.e. convergence in the sense of the energy-dissipation principle for gradient flows. In general, the effective entropy will no longer be of Boltzmann type and the reactions will no longer satisfy mass-action kinetics.

Originele taal-2Engels
Pagina's (van-tot)5762-5798
Nummer van het tijdschrift8
StatusGepubliceerd - aug. 2021

Bibliografische nota

Publisher Copyright:
© 2021 IOP Publishing Ltd & London Mathematical Society.


Duik in de onderzoeksthema's van 'EDP-convergence for nonlinear fast-slow reaction systems with detailed balance'. Samen vormen ze een unieke vingerafdruk.

Citeer dit