Samenvatting
Collagen networks, the main structural/mechanical elements in biological tissues, increasingly serve as biomimetic scaffolds for cell behavioral studies, assays, and tissue engineering, and yet their full spectrum of nonlinear behavior remains unclear. Here, with self-assembled type-I collagen as model, we use metrics beyond those in standard single-harmonic analysis of rheological measurements to reveal strain-softening and strain-stiffening of collagen networks both in instantaneous responses and at steady state. The results show how different deformation mechanisms, such as deformation-induced increase in the elastically active fibrils, nonlinear extension of individual fibrils, and slips in the physical cross-links in the network, can lead to the observed complex nonlinearity. We demonstrate how comprehensive rheological analyses can uncover the rich mechanical properties of biopolymer networks, including the above-mentioned softening as well as an early strain-stiffening, which are important for understanding physiological response of biological materials to mechanical loading.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 691–698 |
Tijdschrift | Biomacromolecules |
Volume | 13 |
Nummer van het tijdschrift | 3 |
DOI's | |
Status | Gepubliceerd - 2012 |