E-statistics, group invariance and anytime-valid testing

Muriel Felipe Pérez-Ortiz, Tyron Lardy, Rianne de Heide, Peter D. Grünwald

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Citaten (Scopus)
27 Downloads (Pure)

Samenvatting

We study worst-case-growth-rate-optimal (GROW) e-statistics for hypothesis testing between two group models. It is known that under a mild condition on the action of the underlying group G on the data, there exists a maximally invariant statistic. We show that among all e-statistics, invariant or not, the likelihood ratio of the maximally invariant statistic is GROW, both in the absolute and in the relative sense, and that an anytime-valid test can be based on it. The GROW e-statistic is equal to a Bayes factor with a right Haar prior on G. Our treatment avoids nonuniqueness issues that sometimes arise for such priors in Bayesian contexts. A crucial assumption on the group G is its amenability, a well-known group-theoretical condition, which holds, for instance, in scale-location families. Our results also apply to finite-dimensional linear regression.

Originele taal-2Engels
Pagina's (van-tot)1410-1432
Aantal pagina's23
TijdschriftAnnals of Statistics
Volume52
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - aug. 2024

Bibliografische nota

Publisher Copyright:
© Institute of Mathematical Statistics, 2024.

Vingerafdruk

Duik in de onderzoeksthema's van 'E-statistics, group invariance and anytime-valid testing'. Samen vormen ze een unieke vingerafdruk.

Citeer dit