Doubly exponentially many ingleton matroids

Peter Nelson, Jorn van der Pol

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Uittreksel

A matroid is Ingleton if all quadruples of subsets of its ground set satisfy Ingleton’s inequality. In particular, representable matroids are Ingleton. We show that the number of Ingleton matroids on ground set [n] is doubly exponential in n; it follows that almost all Ingleton matroids are nonrepresentable.

TaalEngels
Pagina's1145-1153
Aantal pagina's9
TijdschriftSIAM Journal on Discrete Mathematics
Volume32
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1 jan 2018

Vingerafdruk

Matroid
Quadruple
Subset

Trefwoorden

    Citeer dit

    Nelson, P., & van der Pol, J. (2018). Doubly exponentially many ingleton matroids. SIAM Journal on Discrete Mathematics, 32(2), 1145-1153. DOI: 10.1137/17M1160094
    Nelson, Peter ; van der Pol, Jorn. / Doubly exponentially many ingleton matroids. In: SIAM Journal on Discrete Mathematics. 2018 ; Vol. 32, Nr. 2. blz. 1145-1153
    @article{ee5640ea98d3423fbfd6826a40c9f01a,
    title = "Doubly exponentially many ingleton matroids",
    abstract = "A matroid is Ingleton if all quadruples of subsets of its ground set satisfy Ingleton’s inequality. In particular, representable matroids are Ingleton. We show that the number of Ingleton matroids on ground set [n] is doubly exponential in n; it follows that almost all Ingleton matroids are nonrepresentable.",
    keywords = "Enumeration, Matroid, Representable",
    author = "Peter Nelson and {van der Pol}, Jorn",
    year = "2018",
    month = "1",
    day = "1",
    doi = "10.1137/17M1160094",
    language = "English",
    volume = "32",
    pages = "1145--1153",
    journal = "SIAM Journal on Discrete Mathematics",
    issn = "0895-4801",
    publisher = "Society for Industrial and Applied Mathematics (SIAM)",
    number = "2",

    }

    Nelson, P & van der Pol, J 2018, 'Doubly exponentially many ingleton matroids' SIAM Journal on Discrete Mathematics, vol. 32, nr. 2, blz. 1145-1153. DOI: 10.1137/17M1160094

    Doubly exponentially many ingleton matroids. / Nelson, Peter; van der Pol, Jorn.

    In: SIAM Journal on Discrete Mathematics, Vol. 32, Nr. 2, 01.01.2018, blz. 1145-1153.

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    TY - JOUR

    T1 - Doubly exponentially many ingleton matroids

    AU - Nelson,Peter

    AU - van der Pol,Jorn

    PY - 2018/1/1

    Y1 - 2018/1/1

    N2 - A matroid is Ingleton if all quadruples of subsets of its ground set satisfy Ingleton’s inequality. In particular, representable matroids are Ingleton. We show that the number of Ingleton matroids on ground set [n] is doubly exponential in n; it follows that almost all Ingleton matroids are nonrepresentable.

    AB - A matroid is Ingleton if all quadruples of subsets of its ground set satisfy Ingleton’s inequality. In particular, representable matroids are Ingleton. We show that the number of Ingleton matroids on ground set [n] is doubly exponential in n; it follows that almost all Ingleton matroids are nonrepresentable.

    KW - Enumeration

    KW - Matroid

    KW - Representable

    UR - http://www.scopus.com/inward/record.url?scp=85049570433&partnerID=8YFLogxK

    U2 - 10.1137/17M1160094

    DO - 10.1137/17M1160094

    M3 - Article

    VL - 32

    SP - 1145

    EP - 1153

    JO - SIAM Journal on Discrete Mathematics

    T2 - SIAM Journal on Discrete Mathematics

    JF - SIAM Journal on Discrete Mathematics

    SN - 0895-4801

    IS - 2

    ER -

    Nelson P, van der Pol J. Doubly exponentially many ingleton matroids. SIAM Journal on Discrete Mathematics. 2018 jan 1;32(2):1145-1153. Beschikbaar vanaf, DOI: 10.1137/17M1160094