Does increasing the sample size always increase the accuracy of a consistent estimator?

P. Laan, van der, C. Eeden, van

Onderzoeksoutput: Boek/rapportRapportAcademic

114 Downloads (Pure)

Samenvatting

Birnbaum (1948) introduced the notion of peakedness about \theta of a random variable T, defined by $P(| T - \theta | <\epsilon), \epsilon > 0$. What seems to be not well-known is that, for a consistent estimator Tn of \theta, its peakedness does not necessarily converge to 1 monotonically in n. In this article some known results on how the peakedness of the sample mean behaves as a function of n are recalled. Also, new results concerning the peakedness of the median and the interquartile range are presented.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijEurandom
Aantal pagina's5
StatusGepubliceerd - 1999

Publicatie series

NaamReport Eurandom
Volume99007
ISSN van geprinte versie1389-2355

Vingerafdruk

Duik in de onderzoeksthema's van 'Does increasing the sample size always increase the accuracy of a consistent estimator?'. Samen vormen ze een unieke vingerafdruk.

Citeer dit