Divide and congruence III: stability & divergence

W. Fokkink, R. van Glabbeek, B. Luttik

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

8 Citaten (Scopus)
22 Downloads (Pure)

Samenvatting

In two earlier papers we derived congruence formats for weak semantics on the basis of a decomposition method for modal formulas. The idea is that a congruence format for a semantics must ensure that the formulas in the modal characterisation of this semantics are always decomposed into formulas that are again in this modal characterisation. Here this work is extended with important stability and divergence requirements. Stability refers to the absence of a τ - transition. We show, using the decomposition method, how congruence formats can be relaxed for weak semantics that are stability-respecting. Divergence, which refers to the presence of an infinite sequence of τ -transitions, escapes the inductive decomposition method. We circumvent this problem by proving that a congruence format for a stability-respecting weak semantics is also a congruence format for its divergence-preserving counterpart.

Originele taal-2Engels
Titel28th International Conference on Concurrency Theory, CONCUR 2017
Plaats van productieDagstuhl
UitgeverijSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Aantal pagina's16
Volume85
ISBN van elektronische versie978-3-95977-048-4
DOI's
StatusGepubliceerd - 1 aug 2017
Evenement28th International Conference on Concurrency Theory, CONCUR 2017 - Berlin, Duitsland
Duur: 5 sep 20178 sep 2017

Congres

Congres28th International Conference on Concurrency Theory, CONCUR 2017
LandDuitsland
StadBerlin
Periode5/09/178/09/17

Vingerafdruk Duik in de onderzoeksthema's van 'Divide and congruence III: stability & divergence'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Fokkink, W., van Glabbeek, R., & Luttik, B. (2017). Divide and congruence III: stability & divergence. In 28th International Conference on Concurrency Theory, CONCUR 2017 (Vol. 85). [15] Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2017.15