Distance evolutions in growing preferential attachment graphs

Joost Jorritsma (Corresponding author), Júlia Komjáthy (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
47 Downloads (Pure)

Samenvatting

We study the evolution of the graph distance and weighted distance between two fixed vertices in dynamically growing random graph models. More precisely, we consider preferential attachment models with powerlaw exponent τ ϵ (2, 3), sample two vertices ut , vt uniformly at random when the graph has t vertices and study the evolution of the graph distance between these two fixed vertices as the surrounding graph grows. This yields a discrete-time stochastic process in t ' ≥ t , called the distance evolution. We show that there is a tight strip around the function 4 log log(t)-log(log(t'/t)ν1) | log(τ-2)| ν 2 that the distance evolution never leaves with high probability as t tends to infinity. We extend our results to weighted distances, where every edge is equipped with an i.i.d. copy of a nonnegative random variable L.

Originele taal-2Engels
Pagina's (van-tot)4356-4397
Aantal pagina's42
TijdschriftAnnals of Applied Probability
Volume32
Nummer van het tijdschrift6
DOI's
StatusGepubliceerd - dec. 2022

Bibliografische nota

Funding Information:
Funding. The work of JJ and JK is partly supported by the Netherlands Organisation for Scientific Research (NWO) through Grant NWO 613.009.122.

Financiering

Funding. The work of JJ and JK is partly supported by the Netherlands Organisation for Scientific Research (NWO) through Grant NWO 613.009.122.

Vingerafdruk

Duik in de onderzoeksthema's van 'Distance evolutions in growing preferential attachment graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit