Discrete Ziggurat: A time-memory trade-off for sampling from a Gaussian distribution over the integers

J. Buchmann, D. Cabarcas, F. Göpfert, A.T. Hülsing, P. Weiden

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

41 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

Several lattice-based cryptosystems require to sample from a discrete Gaussian distribution over the integers. Existing methods to sample from such a distribution either need large amounts of memory or they are very slow. In this paper we explore a different method that allows for a flexible time-memory trade-off, offering developers freedom in choosing how much space they can spare to store precomputed values. We prove that the generated distribution is close enough to a discrete Gaussian to be used in lattice-based cryptography. Moreover, we report on an implementation of the method and compare its performance to existing methods from the literature. We show that for large standard deviations, the Ziggurat algorithm outperforms all existing methods.
Originele taal-2Engels
TitelSelected Areas in Cryptography - SAC 2013 (20th International Conference, Burnaby BC, Canada, August 14-16, 2013. Revised Selected Papers)
RedacteurenT. Lange, K. Lauter, P. Lisonek
Plaats van productieBerlin
UitgeverijSpringer
Pagina's402-417
ISBN van geprinte versie978-3-662-43413-0
DOI's
StatusGepubliceerd - 2014
Evenement20th International Conference on Selected Areas in Cryptography (SAC 2013) - Burnaby, Canada
Duur: 14 aug. 201316 aug. 2013
Congresnummer: 20

Publicatie series

NaamLecture Notes in Computer Science
Volume8282
ISSN van geprinte versie0302-9743

Congres

Congres20th International Conference on Selected Areas in Cryptography (SAC 2013)
Verkorte titelSAC 2013
Land/RegioCanada
StadBurnaby
Periode14/08/1316/08/13
Ander20th International Conference on Selected Areas in Cryptography

Vingerafdruk

Duik in de onderzoeksthema's van 'Discrete Ziggurat: A time-memory trade-off for sampling from a Gaussian distribution over the integers'. Samen vormen ze een unieke vingerafdruk.

Citeer dit