Discrete-time Convergent Nonlinear Systems

Marc Jungers (Corresponding author), Mohammad Fahim Shakib, Nathan van de Wouw

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
5 Downloads (Pure)

Samenvatting

The convergence property of discrete-time nonlinear systems is studied in this paper. The main result provides a Lyapunov-like characterization of the convergence property based on two distinct Lyapunov-like functions. These two functions are associated with the incremental stability property and the existence of a compact positively invariant set, which together guarantee the existence of a well-defined, bounded, and unique steady-state solution. The links with the conditions available in the recent literature are discussed. These generic results are subsequently used to derive constructive conditions for the class of discrete-time Lur'e-type systems. Such systems consist of an interconnection between a linear system and a static nonlinearity that satisfies cone-bounded (incremental) sector conditions. In this framework, the Lyapunov-like functions that characterize convergence are determined by solving a set of linear matrix inequalities. Several classes of Lyapunov-like functions are considered: both Lyapunov-Lur'e-type functions and quadratic functions. A numerical example illustrates the applicability of the results.

Originele taal-2Engels
Artikelnummer10478552
Pagina's (van-tot)6731-6745
Aantal pagina's15
TijdschriftIEEE Transactions on Automatic Control
Volume69
Nummer van het tijdschrift10
Vroegere onlinedatum25 mrt. 2024
DOI's
StatusGepubliceerd - okt. 2024

Financiering

The work of Marc Jungers was supported in part by project ANR HANDY under Grant ANR-18-CE40-0010. The work of Mohammad Fahim Shakib was supported in part by the EPSRC grant \"Model Reduction from Data\"under Grant EP/W005557.

Vingerafdruk

Duik in de onderzoeksthema's van 'Discrete-time Convergent Nonlinear Systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit