Discovering explicit scale-up criteria in crisis response with decision mining

Britt Lukassen, Laura Genga, Yingqian Zhang

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

42 Downloads (Pure)

Samenvatting

In modern society, incidents such as road incidents or fires, occur daily, requiring institutions to develop appropriate management protocols to react quickly. When an incident requires coordination among different emergency services or it is estimated to have a significant impact on the population, crisis management processes are used. The overall aim of crisis management is to provide the right resources to manage the incident and return to a normal situation as soon as possible. However, the decision to scale up an incident to a crisis level is often left to the experience of operational commanders without explicit criteria or guidelines. In this research, we propose a framework combining data-driven decision-mining approaches with implicit knowledge formalization techniques to discover explicit criteria to support decision-makers in crisis response. We tested our approach in a case study at VRU, the safety region for the region Utrecht, in The Netherlands. The obtained results show that the approach has been able to extract criteria acknowledged by the decision-makers, which is the first step to developing appropriate guidelines to steer the decisional process of the incident scaling up.
Originele taal-2Engels
TitelLearning and Intelligent Optimization
Subtitel17th International Conference, LION 17, Nice, France, June 4–8, 2023, Revised Selected Papers
RedacteurenMeinolf Sellmann, Kevin Tierney
Plaats van productieCham
UitgeverijSpringer
Pagina's459-474
Aantal pagina's16
ISBN van elektronische versie978-3-031-44505-7
ISBN van geprinte versie978-3-031-44504-0
DOI's
StatusGepubliceerd - 25 okt. 2023
Evenement17th Learning and Intelligent Optimization Conference, LION17 - Nice, Frankrijk
Duur: 4 jun. 20238 jun. 2023
Congresnummer: 17

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume14286
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres17th Learning and Intelligent Optimization Conference, LION17
Verkorte titelLION17
Land/RegioFrankrijk
StadNice
Periode4/06/238/06/23

Financiering

The authors would like to thank the Veiligheidsregio Utrecht (VRU) for collaborating on this project. A special thanks to Michiel Rhoen and Arian van Donselaar for their support and providing invaluable insights into the problem.

FinanciersFinanciernummer
Veiligheidsregio Utrecht

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Discovering explicit scale-up criteria in crisis response with decision mining'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit