Digital Waste Disposal: an automated framework for analysis of spam emails

Mina Sheikhalishahi, Andrea Saracino (Corresponding author), Fabio Martinelli, Antonio La Marra, Mohammed Mejri, Nadia Tawbi

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

6 Citaten (Scopus)

Samenvatting

Spam email automated analysis and classification are a challenging task, which is vital in the identification of botnet structures and cybercrime fighting. In this work, we propose an automated methodology and the resulting framework based on innovative categorical divisive clustering, used both for grouping and for classification of spam messages. In particular, the grouping is exploited to identify campaigns of similar spam emails, while the classification is used to label specific emails according to the goal of spammer (e.g., phishing, malware distribution, advertisement, etc.). This work introduces the CCTree algorithm, both as clustering algorithm and as classification algorithm, in two operative modes: batch and dynamic, to handle both large data sets and data streams. Afterward, the CCTree is applied to large sets of spam emails for campaign identification and labeling. The performance of the algorithm is reported for both clustering and classification, and a comparison between the batch and dynamic approaches is presented and discussed.

Originele taal-2Engels
Pagina's (van-tot)499-522
Aantal pagina's24
TijdschriftInternational Journal of Information Security
Volume19
Nummer van het tijdschrift5
Vroegere onlinedatum25 sep. 2019
DOI's
StatusGepubliceerd - 1 okt. 2020

Financiering

This study was funded by H2020 C3ISP Project (GA 700294).

FinanciersFinanciernummer
H2020 C3ISP ProjectGA 700294
Horizon 2020 Framework Programme
Horizon 2020700294

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Digital Waste Disposal: an automated framework for analysis of spam emails'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit