Diffusion variational autoencoders

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

13 Citaten (Scopus)

Samenvatting

A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders (?VAE) with arbitrary (closed) manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the ?VAE is indeed capable of capturing topological properties for datasets with a known underlying latent structure derived from generative processes such as rotations and translations.

Originele taal-2Engels
TitelProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
RedacteurenChristian Bessiere
UitgeverijInternational Joint Conferences on Artificial Intelligence (IJCAI)
Pagina's2704-2710
Aantal pagina's7
ISBN van elektronische versie9780999241165
StatusGepubliceerd - 2020
Evenement29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duur: 1 jan. 2021 → …

Congres

Congres29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Land/RegioJapan
StadYokohama
Periode1/01/21 → …

Bibliografische nota

Publisher Copyright:
© 2020 Inst. Sci. inf., Univ. Defence in Belgrade. All rights reserved.

Financiering

This work has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737459 (project Productive 4.0).

Vingerafdruk

Duik in de onderzoeksthema's van 'Diffusion variational autoencoders'. Samen vormen ze een unieke vingerafdruk.

Citeer dit