Diffusion in a time-dependent external field

S.A. Trigger, G.J.F. Heijst, van, O. Petrov, P.P.J.M. Schram

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)
100 Downloads (Pure)


The problem of diffusion in a time-dependent (and generally inhomogeneous) external field is considered on the basis of a generalized master equation with two times, introduced by Trigger and co-authors. We consider the case of the quasi-Fokker-Planck approximation, when the probability transition function for diffusion (PTD function) does not possess a long tail in coordinate space and can be expanded as a function of instantaneous displacements. The more complicated case of long tails in the PTD will be discussed separately. We also discuss diffusion on the basis of hydrodynamic and kinetic equations and show the validity of the phenomenological approach. A type of "collision" integral is introduced for the description of diffusion in a system of particles, which can transfer from a moving state to the rest state (with some waiting time distribution). The solution of the appropriate kinetic equation in the external field also confirms the phenomenological approach of the generalized master equation.
Originele taal-2Engels
Pagina's (van-tot)011107-1/9
Aantal pagina's9
TijdschriftPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Nummer van het tijdschrift1
StatusGepubliceerd - 2008

Vingerafdruk Duik in de onderzoeksthema's van 'Diffusion in a time-dependent external field'. Samen vormen ze een unieke vingerafdruk.

Citeer dit